Refutation of the Baldridge Block-Shuffle theory
The Baldridge Block Shuffle is an ingenious theory, which
was
invented by Mr. Baldridge during his student days, in
order to
provide a possible way, in which the 50 to 75 tons
heavy granite
blocks above the King's chamber of the Great Pyramid
may have
been transported there by ancient Egyptians. Ironically,
the Great Pyramid is one of the places, where the method could
not work,
because the number of blocks to transport had been greater
than
the method's maximum capacity.
|
Anyhow, the block-shuffle method would have had to accomodate
even more blocks, which the other methods could not measure
up to.
The Zig-zagging ramp, for instance, could only supply
15 ton blocks to
the height of approximately 34.3 meters, and no higher.
Check:
http://www.geocities.com/CapeCanaveral/Lab/5586/pyrside.htm
Yet, many od the blocks in the chamber's floor, and walls
may weigh
in excess of 15 tons, by the looks of in the diagram.
Unfortunately, my criticism of the Block-Shuffle
method didn't seem to
penetrate. Here is one wishful
reaction:
> If I understand the "Baldridge
Block Shuffle Theory" your
> principle argument is that the
surface area of the partly
> constructed pyramid top is not
large enough for the pullers
> to position the stones.
One flaw with your arguement is
> that you assume the same long,
narrow column of pullers
> needed for the small ramps must
also be used on the
> pyramid top. There is nothing
to prevent the pullers
> from switching to a short, wide
configuration after
> clearing the narrow ramp.
Here it is appropriate to observe that by the same logic
there is
also nothing to prevent the pullers from going for a
beer instead..
Our champion of the status quo
had coolly ignored my observation
that even though wider team configurations
will obviously need less
room ahead - they will
need more room on the sides to stay clear of
the already parked blocks. _ There
should be a law against such
brazen arrogance, jamming the newsgroups.
No matter, how one may combine
the configurations - nothing works.
There simply isn't enough space
for manouvering all the blocks around,
on the working platform, as the
reader shall see.
- * -
How does the B. Block Shuffle
do at 40 metres above the base?
At that height, the length of one
side shrinks from 230.4 meters to 167.5
meters . So, the working platform
is 167.5 x 83.75 meters (549' by 274.5').
At a glance, this would seem like
enough room to manouver in,
but, we must not forget about the
dead
zone - as the blocks
simply cannot be dragged all the
way to the Pyramid's edges.
The dead zone is the space between
the edges and the blocks,
which is occupied by the towing
column.
How long are the columns towing 60 ton blocks?
The "Secrets of Lost Empires" had
250 Andean natives towing
a 15 ton block.
They had trouble overcoming the block's inertia,
but afterwards everything proceeded
smoothly. Yet, we want our
column of pullers to be as short
as possible, So, let's do the opposition
a big favor, and suppose that 800
men (rather than 1,000 men) could
pull a 60 ton block. Those 800
men form 12 files and 67 ranks.
Tightly packed at two feet apart
between ranks - their throng
is 132 feet
long. Such a throng is also at least 20 feet wide. Note
that this last estimate favors
the opposition, too, by several feet.
Adding 30 feet for the sleds carrying
the 26 feet long blocks, and
a couple of feet for the space
between the sleds and the team (again,
this favors the opposition) gives
a 162 feet total (men-rope-sleds).
This means that the back-end of
each sled can get no closer
than 162 feet
to the pyramid's edge straight ahead.
The Straight Line Formation (at 40 meters)
Building a wide ramp all along the
middle of the Pyramid, and
towing the blocks straight ahead
would be limited to 50 blocks,
at best. The diagram below shows
48 blocks in such a formation.
The Butterfly Formation
We try fanning out the blocks from
one, or two narrow ramps
near the center. After the first
block gets pulled onto the higher
half of the working platform, the
front of the towing team is just
113 feet from the edge of the pyramid
up ahead. Next, the team
must reposition itself, and turn
the sleds, because towing them
straight ahead would barricade
the way for the other blocks.
The first block should likely
be towed towards one of the pyramid's
corners. Only the last block would
be towed straight ahead.
The team, passing on either side
of the preceding block, will be
at least 20 feet wide (favoring
the opposition significantly, again),
and since the block behind the
team sets the team's central axis -
there will always be some space
between neighbouring blocks.
Diagramming this method in CAD
proves that it fails the task, too.
The long and narrow black rectangle
in the center shows the gaping
hole of the Grand Gallery. This
5'2'' wide tunnel proves to be a major
obstacle to manouvering the blocks.
At the top of the diagram, we have
an array of 52 blocks, of which 36
fan out from the on-ramps near
the center. The yellow rays represent
the throngs of pullers 132' long.
We used the longest possible (225'),
and narrowest possible (16') columns
of pullers for the 8 blocks, shown
on each side, to maximize the output.
Each side-group has a separate
wide ramp, which would certainly
add to the total effort. The 16
additional blocks give us the best result,
but this alternative still proves
only slightly superior to the first method.
Conclusion
At 40 meters above the Pyramid's
base, the block-shuffle method
can handle 52 big blocks in
all. That is insufficient for the purpose.
Moreover, the floor of the King's chamber is at the height
of almost 50 meters,
and the big blocks start several meters higher still.
Once again, we did the opposition a huge favor, just
in order to be conservative
in our estimates..
At the bottom of this diagram, we
see a formation of 80 blocks in groups
of ten, loaded on sleds 30' long
and 6' wide. Spaced out as required, self-
evidently, these many blocks just
could not fit the Pyramid widthwise.
Yet, the total number of the sleds
may have needed to be even greater..
Situation at 47 meters
If anyone thinks that our results so far are inconclusive,
this won't
be so a little higher, let's say, at 47 meters.. At this
height, 2 meters
below the King's Chamber, the available space for manouvering
with
the blocks shrinks to 513.4 x 256.7 feet.
Correspondingly, the number
of blocks we can move this high decreases to mere 46
blocks.
Conclusion
To be fair, the Baldridge method
is quite ingenious. It just might
work for a smaller number of giant
stones than we have on hand.
However, it fails as a solution
for the task posed by the Great Pyramid.
© Jiri Mruzek 1998
Top Menu Nasca Monkey Report Previous Articles Frame Frame's Hex-machine Frame's 5-pointed stars
Denial of the Pyramid's 70-ton
Blocks
Quitt While A Head
Mechanical Disadvantage topples
K. Quitt's version of the Wheeled Block method
Part 1 - Sweet Sixteen
Part 2 - Great Pyramid's Ramp
'Theory' Refuted
The Basic Geometry of the
Seal of Atlantis
The Frame A Message on
PI, PHI, and Repeating Blocks
Complex Hexagonal Geometry
Complex Pentagonal Design
The Nasca Monkey Report - 123
4
56
7
Art-page Math-pageArticlesGallery